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The aim of this SA is to check if the sensitivity of the model with snow parameter fixed (by 

those from SWAT calibration, see work of Youen Grusson). 

The method 
The screening method initially developed by (Morris, 1991) and modified by (Campolongo 

et al., 2007), known as elementary effects method, allows identifying the important factors of 

a model, including those involved in interactions. It is based on a “One-factor-At-a-Time” 

(OAT) design of experiments, and is generally used when the number of model parameters is 

large enough to require computationally expensive simulations. For each parameter, two 

sensitivity estimates are obtained, both based on the calculation of incremental ratios at various 

points in the input space of parameters. The incremental ratio is the ratio between the variation 

of the model output in two different points of the input space (where only one parameter is 

varied at a time) and the amplitude of the variation of the parameter itself. The Morris method 

calculates elementary effects (Ri) due to each input factor using the following equation: 

𝑅𝑖(𝑥1. … . 𝑥𝑛. Δ) =
𝑦(𝑥1. … . 𝑥𝑖−1. 𝑥𝑖 + Δ. 𝑥𝑖+1. … . 𝑥𝑛) − 𝑦(𝑥1. … . 𝑥𝑖−1. 𝑥𝑖. 𝑥𝑖+1. … . 𝑥𝑛)

Δ
 

where y(X) is the output. X = (x1. x2. …. xn) is the n-dimensional vector of factors being studied. 

 is the elementary increment of the OAT. 

The method samples values of X from the parameter space to calculate mean (μ, assessing 

the overall influence of the factor on y(X)) and standard deviation (σ, estimating the totality of 

the higher order effects, i.e. nonlinearity or interactions with other factors) of all the Ri obtained 

for each factor. In our case, the exploration of the parameter space was improved by the used 

of a Latin Hypercube Sampling (LHS), as already illustrated, for example, in (Francos et al., 

2003; Van Griensven et al., 2002). Around each point of the LHS of dimension t, an OAT is 

achieved, so the total number of model evaluations needed is t(n+1). In order to improve a bit 

more the quality of the design we used an LSH, which maximised the ‘maximin’ criterion 

(Johnson et al., 1990), i.e. the one with the highest minimum distance of two points of the 

design. The first sensitivity estimate (μ) is obtained by computing a number of incremental 

ratios at different points of the input space, and then taking the average of their values. Whereas, 

the second measure (σ) is the standard deviation of their values, and is useful to detect 

parameters either interacting with other parameters, or the effect of which is non-linear (Saltelli 

et al., 2004). A large measure of central tendency μ indicates an input with an important overall 

influence on the output (total effect), while a large σ indicates either a parameter with non-linear 

effect on the output, or a parameter involved in interaction with other parameters (higher than 
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one-order effects). The most relevant parameters are those located in the top right area of the σ 

(spread) versus μ (strength) plot, where both sensitivity measures are high. 

Our implementation 
In our case, the sensitivity analysis was performed over 22 parameters (Table 1), all 

belongings to the hydrologic sub-model, but not of the snow equations. 

To keep the consistency with further sensitivity analysis, the chosen size of the LHS is 

twelve. The elementary increment of the OAT corresponds to a shift of 1/12 probability over 

his Uniform distribution. Our number of simulations (288, for 12 local OAT of 23 simulations) 

is in accordance with literature which suggest at least five OAT for robustness (Confalonieri et 

al., 2010). As we do not have enough information to chose a distribution, we decided to use a 

Uniform one as in SWAT literature (e.g. Cibin et al., 2010; Moreau et al., 2013; Muleta and 

Nicklow, 2005) where authors also recognize that they do not have enough information to 

determine a distribution curve. However, the use of Uniform distribution is highly common 

when the main objective is to understand model behaviour (Monod et al., 2006). 

 

Simulations were done over ten years (2000-2009), but the two first years were considered 

as spin-up period and then ignored. Simulations were simply distributed on a local computer 

(Quad-Core Intel Xeon: 8 threads with 32 Go RAM), then indices (i.e. μ* which is mean of 

absolute elementary effects Ri and σ) were calculated thanks to the ‘sensitivity’ R package 

(http://rss.acs.unt.edu/Rdoc/library/sensitivity/html/sensitivity-package.html). 

Sensitivity of 11 types of outputs (Table 2) was calculated, by considering scaled parameters 

(i.e. a [0; 1] parameter range values). The sensitivity was considered either over the full year or 

during low water period (1st of May-30th September). For each output, sensitivity of the average 

or the standard deviation, were studied, excepted for dates were the coefficient of variation was 

used as a proxy of uniformity measure. The hydrologic sensitivity was also check over spatial 

pattern (e.g. upstream and downstream area) 

 

Table 1 MAELIA parameter description 

Parameter 
Min 

value 

Max 

value 
Unit Additional information 

surlag 0,5 10 day Surface runoff lag time 

nch 0.01 0.1 - 
Manning coefficient value for tributary 

channels 

ESCO 0.01 1 - Soil evaporation compensation factor 

EPCO 0 1 - Plant uptake compensation factor 

δgw 0 50 day Groundwater delay  

βrev 0.001 0.2 - 
Groundwater revap coefficient 

(0.1 for calibration) 

βdeep 0 1 - Coefficient for percolation to deep aquifer  

αgw 0 0.3 - Baseflow recession constant 

http://rss.acs.unt.edu/Rdoc/library/sensitivity/html/sensitivity-package.html
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aqshthr.rev 0 3000 mm 
Threshold water level in shallow aquifer for 

revap 

aqshthr.q 0 1500 mm 
Threshold water level in shallow aquifer for 

baseflow 

CN2 -10 % +10 % - 

SCS Curve number (one value per landuse: 

GRASS: 70; FRST: 70; URBN: 65; WATR: 

92) 

nterrain 0.01 0.3 - Manning coefficient value for overland flow.  

msk1 0.5 1 - Muskingum coefficient 

msk2 = 1 – msk1 msk2 0 0.5 - 

RCHST 0 10 000 m³ Initial water volume of channels. 

mskX 0 0.5 - Muskingum wedge factor  

LAI 1.5 3 m2/m2 Leaf Area Index for grasslands.  

SWinit 0 1 - 
Initial soil moisture (fraction of field 

capacity) 

tlaps -8.0 -4.0 K/km Temperature change with altitude 

plaps 200 800 mm/km/y Precipitations change with altitude 

SHALLST 0 2000 mm Initialisation of shallow aquifers. 

 

Table 2 Outputs considered in sensitivity analysis 

Output name Unit Description Full 

year 

Low- 

flow 

Comments 

ET mm Real Evapotranspiration X X Sum and 

standard 

deviation, 

weighted by 

surfaces were 

considered 

SwFin mm Soil water content X X 

Perc mm Percolation X X 

eauEntreeAquiferes mm Water input in aquifers X X 

eauAquifereProfond mm Deep water aquifers content X X 

Recap mm Capillary rise water amount X X 

eauStockeeAquiferePeuProfond mm Shallow water aquifers 

content 

X X 

ruissellementDeSurfaceHRU mm Runoff over an HRU X X 

ecoulementLateral mm Lateral flow X X 

ecoulementEauSouterraine mm Deep water flow X X 

Water flows m3/s Water flow over 22 sites 

(which can be used for 

calibration) 

X X Sum and 

standard 

deviation 

 

Results 
  

Water flow at measure stations 
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Figure 1. Water flow sites considered in the sensitivity analysis.  

 

Considering water flow sensitivity at the different sites (Figure 1), we can find a common 

set of parameters that seems to drive average values and their dynamics: 

- The “surlag” parameter, as it drives runoff equations is influent over every site. It is the 

most influent parameter on the dynamic. It also shows to have a high level of non-

linearity or interaction with other parameters. 

- The (βdeep) coefficient for percolation to deep aquifer and the to aqshthr.rev, threshold of 

activation of revap equation, are the most influent parameter on the average value of 

the water flow. Their influence is linked to thier ability to influence the deep aquifers 

volume. They also shows a high level of non-linearity or interaction with other 

parameters. 

- The curve number “CN2” parameter which influences runoff of grassland (CN2_GRASS) 

and forest (CN2_FRST) surfaces is mainly influent on the dynamic. The first one is only 

influent in middle and downstream region (which is due to the fact that upstream region 

have very few agricultural surfaces), whereas this parameter for forest is highly influent 

on upstream and middle region, and do not appears as an influent parameters in the 

downstream region excepted at the outlet site. 

- The ground water delay (δgw) parameter is never the most influent however it is influent 

on every site. It is influent on the low water period, whereas on annual scale it is not. 
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- Therefore the exclusion of the two first years, the initial value of shallow aquifers is 

still influent on the average value. However an easy way to avoid the problem for 

calibration could be to initiate aquifers with equilibrium values. 

- The Manning coefficient for the overland flow is influent on dynamic in most 

case.  

Interestingly, some parameters are only influent on some sites: 

- “LAI” parameter appears to be influent in middle and downstream region. 

- The “tlaps” and “plaps” parameter (which corrects the climate due to a difference of 

altitude with the climate grid) had shown a significant influence on upstream region 

(where in fact the differences to the altitude of reference are higher). 

Based on sensitivity results of flows at site levels, we could build a complete list of 

parameters that are considered influent enough (e.g. at least 10% of the maximum μ* and σ). 

We would get the following list (Table 3). Interestingly, there are very few differences on the 

order of influent parameters whether we consider water flow on the whole year or only during 

the “low water period”. Only the groundwater delay (“δgw”) seems to be more influent under 

low water period. 

 

Table 3. List of parameters considered as influent on water flows 

Parameter 

Frequency of occurrences below the 10% threshold 

All sites, 

during low 

water period 

All sites, over 

whole year 

On the 3 

calibration sites, 

low water period 

Roquefort, 

low water 

period 

Valentine, 

low water 

period 

Portet, 

low water 

period 

aqshthr.rev 93.2% 93.2% 100.0% 100.0% 100.0% 100.0% 

CN2_FRST 72.7% 50.0% 100.0% 100.0% 100.0% 100.0% 

βdeep 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

δgw 93.2% 47.7% 100.0% 100.0% 100.0% 100.0% 

SHALLST 79.5% 77.3% 83.3% 50.0% 100.0% 100.0% 

nterrain 47.7% 47.7% 50.0% 50.0% 50.0% 50.0% 

surlag 47.7% 47.7% 50.0% 50.0% 50.0% 50.0% 

βrev 56.8% 40.9% 50.0% 50.0% 50.0% 50.0% 

aqshthr.q 34.1% 11.4% 33.3% - - 50.0% 

CN2_GRASS 40.9% 38.6% 16.7% - - 50.0% 

nch 6.8% 9.1% 16.7% - - 50.0% 

tlaps 13.6% 6.8% 16.7% 50.0% - - 

LAI 31.8% 22.7% - - - - 

plaps 9.1% 4.5% - - - - 

msk1 et msk2 - 2.3% - - - - 

 

Water processes and variables 
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As expected, parameter influence is partly changed whether we consider full year or only 

the low flow period, so we will mainly focus on low flow period. 

 

As expected the initial water amount (SHALLST) is influent on shallow aquifer. The βdeep, 

βrev and aqshthr.q parameter are influent on both shallow and deep aquifers. Shallow aquifers are 

also sensitive to aqshthr.rev. The ground water delay is also influent on deep aquifers dynamic. 

Water aquifer input dynamic is mainly to the groundwater delay (δgw), whereas its average 

value is mainly linked to aqshthr.q parameter, and βrev . 

Deep-water flow is, as expected, highly sensitive to βdeep, βrev , aqshthr.rev and aqshthr.q.  

The evapotranspiration sensitivity is low and is mainly influenced by the LAI parameter. 

Surprisingly, we could note a low sensitivity to the EPCO and ESCO factors. 

Lateral flow shows is sensitive to the curve number (CN2_FRST) of forest and to parameters 

of influence the aquifers (βdeep, βrev , aqshthr.rev and aqshthr.q). 

Percolation process showed to be sensitive to βrev, LAI, SHALLST, CN2_FRST, and aqshthr.q. 

The capillary rise is one of the most sensitive process (i.e. which covers a wide relative 

variation range). Its most influent parameters are aqshthr.q βrev ,aqshthr.rev and SHALLST. 

 Runoff sensitivity is dominated by the surlag, the curve number factors (CN2_FRST and 

CN2_GRASS), the dynamic is also well influenced by nterrain. 

The soil water amount sensitivity is firstly dominated by βrev. Some other parameters such 

as aqshthr.,q ,aqshthr.rev ,LAI and SHALLST show a high non-linearity or a high level of interaction 

with other parameters on this process. 

 

One can ask whether the sensitivity would significantly different whether we consider the 

whole area or the up or downstream region. To check this pattern, we also performed the 

analysis on two sub-areas (Figure 2). 
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Figure 2. Split of the area on upstrean and downstream region 

As expected some process or output show the same sensitivity on both area (deep and 

shallow aquifers water content, deep-water flow, capillary rise), whereas for others (water 

aquifer input, lateral flow, percolation, runoff) we can distinguish two patterns: 

- the curve number for forest (CN2_FRST) is highly influent in the upper part 

- the curve number for grassland (CN2_GRASS) and their leaf area index (LAI) for the 

downstream part 

Interestingly the soil water amount (simulated by SWAT) sensitivity is highly different 

between up- and downstream region. It is three times more sensitive in downstream region than 

in the up-stream region. 

 

 

References 

 

Campolongo, F., Cariboni, J., Saltelli, A., 2007. An effective screening design for sensitivity 

analysis of large models. Environ. Model. Softw. 22, 1509–1518. 

Cibin, R., Sudheer, K.P., Chaubey, I., 2010. Sensitivity and identifiability of stream flow 

generation parameters of the SWAT model. Hydrol. Process. 24, 1133–1148. 

Confalonieri, R., Bellocchi, G., Bregaglio, S., Donatelli, M., Acutis, M., 2010. Comparison of 

sensitivity analysis techniques: a case study with the rice model WARM. Ecol. Model. 

221, 1897–1906. 

Francos, A., Elorza, F.J., Bouraoui, F., Bidoglio, G., Galbiati, L., 2003. Sensitivity analysis of 

distributed environmental simulation models: understanding the model behaviour in 

hydrological studies at the catchment scale. Reliab. Eng. Syst. Saf. 79, 205–218. 



 8 

Guse, B., Reusser, D.E., Fohrer, N., 2013. How to improve the representation of hydrological 

processes in SWAT for a lowland catchment - temporal analysis of parameter sensitivity 

and model performance. Hydrol. Process. 

Johnson, M.E., Moore, L.M., Ylvisaker, D., 1990. Minimax and maximin distance designs. J. 

Stat. Plan. Inference 26, 131–148. 

Monod, H., Naud, C., Makowski, D., 2006. Uncertainty and sensitivity analysis for crop models, 

in: Wallack, D., Makowski, D., Jones, J.W. (Eds.), Working with Dynamic Crop Models. 

Elsevier, Amsterdam; Boston, pp. 55–100. 

Moreau, P., Viaud, V., Parnaudeau, V., Salmon-Monviola, J., Durand, P., 2013. An approach 

for global sensitivity analysis of a complex environmental model to spatial inputs and 

parameters: A case study of an agro-hydrological model. Environ. Model. Softw. 47, 

74–87. 

Morris, M.D., 1991. Factorial Sampling Plans for Preliminary Computational Experiments. 

Technometrics 33, 161–174. 

Muleta, M.K., Nicklow, J.W., 2005. Sensitivity and uncertainty analysis coupled with 

automatic calibration for a distributed watershed model. J. Hydrol. 306, 127–145. 

Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M., 2004. Sensitivity analysis in practice: a 

guide to assessing scientific models. John Wiley & Sons, Hoboken, NJ. 

Van Griensven, A., Francos, A., Bauwens, W., 2002. Sensitivity analysis and auto-calibration 

of an integral dynamic model for river water quality. Water Sci. Technol. 45, 325–332. 

Van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., Srinivasan, R., 2006. 

A global sensitivity analysis tool for the parameters of multi-variable catchment models. 

J. Hydrol. 324, 10–23. 


